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The system of differential equations of heat conduction of a dispersed
medium is replaced by the system of differential equations of anelec-
trical circuit; the simulation conditions are examined.

In [1, 3]* it was shown that the differential equations
of heat conduction in a disperse system can be written
in the following form:
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Solutions of system (1), (2) were also obtained in the
form of sums of infinite series.

An analysis of the solutions of the system of equa-
tions (1), (2) showedthat at small values of time T the
corresponding series converged extremely slowly. On
the other hand, an analysis of the system isof greatest
interest precisely at small values of T, when the heat
fluxes are considerable and there is least justification
for assuming that the dispersed medium may be re-
garded as a continuous medium with appropriate val-
ues of the thermophysical coefficients. The solutions
obtained can be analyzed numerically on a digital com-
puter. However, initially the complete analysis of the
solution requires the comparison of numerous variants
with variation of the individual parameters in order to
estimate the possibility of simplifications and compare
the solutions obtained with the experimental data. In
this case the use of a digital computer would involve a
great deal of time.

Accordingly we selected the less laborious and suf-
ficiently reliable method of electrical simulation, which,
moreover, permits a discrete system to be more cor-
rectly simulated if a suitable step is chosen.

We will consider the electrical circuit shown in Fig.
1. Here, two conducting bars are separated by an in-
termediate layer F and insulated from the walls by a
gap 1. We assume that the capacitance between the bars
can be neglected as compared with the conductance in
the intermediate layer F and that the conductance be-
tween the bars and the wall can be neglected as com~
pared with the capacitance.

*After publication of these articles the authors re-
ceived from Professor L.I. Rubinshtein a copy of his
paper [4] from which it follows that the proposed sys-
tem of differential equations was obtained by another
method in 1945.

Let A' and A'' be the conductances of the corre-
sponding bars referred to unit length. Then in this case
the conductances of an element of the bars of length Ax
are, respectively, equal to A'/Ax and A"/Ax. Assume
that the functions A' (x) and A" (x)are continuous and
differentiable with respect to the independent variable
X. We will now consider certain points O! and O" on
the two bars and the adjacent points 1'and 2'and 1" and
2" at distances from the points O' and O" equal to + Ax
and —Ax, respectively. We denote the conductance be-
tween the bars per unit length by B and assume that it
is independent of x. Then on the length Ax the conduc-
tance between the bars is equal to BAx, and the capac-
itance to C' Ax and C" Ax,'respectively. We will consider
the equivalent circuit of the elementary cell Ax (Fig.
2).

Following Gutenmakher [2], we derive the differen~
tial equation of voltage distribution along bars of vari~
able conductance. From Kirchhoff's law (Fig. 2) we
have the equations
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Then the current increment, divided by Ax, will be
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Denoting Ux — Uy by AUk and Vi — Vo by AVy, we

write Egs. (3) and (4) in the abbreviated form
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Applying the Taylor expansion formula to the differ-
ences AUk and AV, we see that the first differences
AUy and AU;, and also AV, and AV,, if we stop atthe
fourth-order term in the expansion, have the following
form:
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where (8%U/0x%) )k, (8%v /oxY k,1 denote the mean value
of the fourth derivative for the interval Xk, X]-

Substituting (7) and (8), as well as (9) and (10), in
(5) and (6), respectively, we obtain
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Now applying the Taylor formula to the difference
(A% ~ A') and also to (A" — A"), discarding terms of
the third order and above, and introducing thenotation

(A% + AY)/2 = A' and (A", + A" ) /2 = A" we obtain
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Substituting the differences (13) and (14) in (11) and
(12), we obtain

. ¢ U
{ EAkAUk: dA” aU +A’62+
(A x)? st dx ox ox’

Ax &4 U (A x)? dA' U
A dx* Ox 3! dx 0%
(A x)* 33U ( oaU ) n
A3 9«x° ax® |
2(A x)? o U )
'A' — » 15
+ 41 [( 0x4 )2,0 +( ax‘* 1,0 ( )
2
1 v " dA” oV , 0%V
— AeAVy = —— —— 1 A
(A x)? sk BT dx 0x + ox* *
CAx B4 (A% dA eV

Rt el

A xP oV ( v )12

2131 9x® \ 9x®
2 ¢ 4 4
+ A,,?(Ax) (BV) 4 5‘V) } (16)
41 ox* Ja0 dx* Jio

In the limit as Ax — 0, we obtain
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similarly,
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Assuming in this particular case that A' and A" are
constants and substituting the values of D’ and D” in (5}

A2 + At U U
+ g (A H oxt )2,o+( ox* Jiol’ (11) and (6), we finally obtain
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Fig. 1. Electrical analog of heat conduction in
a dispersed medium,

Dividing Egs. (19) and (20) by C' and C", respec-

tively, and introducing the notation A'/C'=%', A"/CM =
= k", B/C' = p'.and B/C" = p",| we obtain
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In order to find the similarity conditions, wereduce
Egs. (1) and (2), together with (21) and (22),to dimen-
sionless form, expressing the variables in the form of
a product of the initial (basic) quantities and dimension~
" less multipliers. Thus, for example, for Egs. (1) and
(2) of the thermal system we have
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Here, S%, t;, and the other quantities with subscript 0
are basic values, and 8, t, and the other barred quanti-
ties dimensionless multipliers. Substituting these pro-

ducts in Egs. (1) and (2) and placing the basic quanti-
ties in front of the differentiation sign, we obtain
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Dividing the terms of Eqgs. (23) and (24) by to/Tor
and 6,/7¢T, respectively, we see that all the terms of
the equations assume a dimensionless form, namely:
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After making analogous calculations for the electrical
system, we obtain the following system of dimension-
less equations:
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Consequently, the circuit in question does in fact
simulate the system of differential equations (1) and
(2). For similarity of the phenomena in the thermal
and electrical systems, which are expressed by the
same differential equations, it is necessary for all the
coefficients of these equations, reduced to dimension~
less form, to be respectively equal. Then the changes
of the unknown quantity in the electrical circuit
[U(x, T) and V(x, TE)], referred to its basic value,
will coincide with the changes of the analogous quanti-
ty of the thermal system [t(x, 7o) and 8(x, 71)], re-~
ferred to its basic value. Thus, equality of the follow-
ing quantities is required:

ag—T_ oy E (29)
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Botor = o Top (31)
g = kg %, (32)
%% x5
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From (31) and (34) we obtain
B/ Bo = pa/ps = C/Co. (35)
From (29), (32) we obtain |
A _a G
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Using (35), we obtain

Aq dn Bo (36)

A; [21) BD

In practice relations o'y /a", and 8",/B', are known
for each specific case. Thus, we have a relation
between A', and A",. Selecting one of these quan-
tities, we determine the other, together with C',

and C",, thus:

Co=— &, (37)
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Knowing the values of C'% and C", we find value of By
from (31) or (34). From (31) it follows that

B, = Po Co ~2— . (39)
ToE

Thus, having selected a suitable ratio of the dura-
tions of the natural and simulated processes, we can
calculate all the quantities required for the electrical
circuit (Fig. 2).

NOTATION

a' is the thermal diffusivity of the solid phase; a®

is the thermal diffusivity of the gas phase; 6is the tem-

perature of the gas; t is the temperature of the parti-
cles; 7 is the time; C' and C" denote electrical capa~
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citance; U is the potential at bar I; V is the potential
at bar II; A' and A" are the conductances of bars re~

Fig. 2. Electrical model of thermal system.

ferred to unit length; B is the conductance of inter-
mediate layer F per unit length,
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